Semantics of Separation-Logic Typing and Higher-order Frame Rules for Algol-like Languages

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantics of Separation-Logic Typing and Higher-order Frame Rules for Algol-like Languages

We show how to give a coherent semantics to programs that are well-specified in a version of separation logic for a language with higher types: idealized algol extended with heaps (but with immutable stack variables). In particular, we provide simple sound rules for deriving higher-order frame rules, allowing for local reasoning.

متن کامل

Higher-Order Logic Programming Languages with Constraints: A Semantics

A Kripke Semantics is defined for a higher-order logic programming language with constraints, based on Church’s Theory of Types and a generic constraint formalism. Our syntactic formal system, hoHH(C) (higher-order hereditary Harrop formulas with constraints), which extends λProlog’s logic, is shown sound and complete. A Kripke semantics for equational reasoning in the simply typed lambda-calcu...

متن کامل

Semantics of Dynamic Variables in Algol-like Languages

A denotational semantic model of an Algol-like programming language with local variables, providing fully functional dynamic variable manipulation is presented. Along with the other usual language features, the standard operations with pointers, that is reattachement and dereferencing, and dynamic variables, that is creation and assignment, are explicated using a possible worlds, functor catego...

متن کامل

Generalizing the higher-order frame and anti-frame rules

This informal note presents generalized versions of the higherorder frame and anti-frame rules. The main insights reside in two successive generalizations of the “tensor” operator ⊗. In the first step, a form of “local invariant”, which allows implicit reasoning about “well-bracketed state changes”, is introduced. In the second step, a form of “local monotonicity” is added.

متن کامل

Topos Semantics for Higher-Order Modal Logic

We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E . In contrast to the wellknown interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE , but rather by a suitable complete Heyting algebra H . The canonical map relating H and ΩE both serves to interpret equality and provides a modal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Logical Methods in Computer Science

سال: 2006

ISSN: 1860-5974

DOI: 10.2168/lmcs-2(5:1)2006